Prediction of Pharmacokinetic Parameters Using a Genetic Algorithm Combined with an Artificial Neural Network for a Series of Alkaloid Drugs
نویسندگان
چکیده
An important goal for drug development within the pharmaceutical industry is the application of simple methods to determine human pharmacokinetic parameters. Effective computing tools are able to increase scientists' ability to make precise selections of chemical compounds in accordance with desired pharmacokinetic and safety profiles. This work presents a method for making predictions of the clearance, plasma protein binding, and volume of distribution for alkaloid drugs. The tools used in this method were genetic algorithms (GAs) combined with artificial neural networks (ANNs) and these were applied to select the most relevant molecular descriptors and to develop quantitative structure-pharmacokinetic relationship (QSPkR) models. Results showed that three-dimensional structural descriptors had more influence on QSPkR models. The models developed in this study were able to predict systemic clearance, volume of distribution, and plasma protein binding with normalized root mean square error (NRMSE) values of 0.151, 0.263, and 0.423, respectively. These results demonstrate an acceptable level of efficiency of the developed models for the prediction of pharmacokinetic parameters.
منابع مشابه
Prediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network
Introduction: It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure. Materials & Methods: This study utilized a m...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملPrediction and optimization of load and torque in ring rolling process through development of artificial neural network and evolutionary algorithms
Developing artificial neural network (ANN), a model to make a correct prediction of required force and torque in ring rolling process is developed for the first time. Moreover, an optimal state of process for specific range of input parameters is obtained using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods. Radii of main roll and mandrel, rotational speed of main roll, pr...
متن کامل